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Abstract. The main contribution of this paper1 is a new approach to
χ2 analyses of block ciphers in which plaintexts are chosen in a manner
similar to that in a square/saturation attack. The consequence is a faster
detection of χ2 correlation when compared to conventional χ2 cryptanal-
ysis. Using this technique we (i) improve the previously best-known χ2

attacks on 2- and 4-round RC6, and (ii) mount the first attacks on the
MRC6 and ERC6 block ciphers. The analyses of these fast primitives
were also motivated by their low diffusion power and, in the case of
MRC6 and ERC6, their large block sizes, that favour their use in the
construction of compression functions. Our analyses indicate that up to
98 rounds of MRC6 and 44 rounds of ERC6 could be attacked.

Keywords: Block ciphers, χ2, square and linear cryptanalysis.

1 Introduction

In this paper we present a new, generic approach to χ2 cryptanalysis which com-
bines conventional χ2 and integral techniques. In this approach, the plaintexts
are chosen like in a square/saturation attack, that is, part of the input is fixed
and the remaining part is varied exhaustively. Further, the attack is adaptive
in the sense that we keep on generating plaintexts until χ2 correlation is de-
tected. The advantage of this approach is that it allows faster detection of χ2

correlations in block ciphers compared to previous approaches. One drawback is
that it is not straightforward to turn the chosen-plaintext (CP) setting into a
known-plaintext (KP) one.
� This author is supported by an FWO project.
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We apply this new approach to the block ciphers RC6, ERC and MRC6. RC6
[1] was designed by Rivest et al. for the AES Development Process [2]. RC6
was one of the five finalists in the AES competition and was also submitted to
NESSIE and CRYPTREC projects. ERC6 [3] is a wide-block variant of RC6,
designed by Ragab et al. in 2001. MRC6, proposed by El-Fishawy et al. in 2004
[4], is another wide-block variant of RC6.

In our attacks, the choice of the plaintext bits to be chosen and the ciphertext
bits to be analysed is based on prior linear analysis, which provided the bit
positions with highest expected non-uniform bias. Our attacks follow a similar
methodology as the mod-n attacks against the block ciphers RC5P and M6 [5].

Our considerations and conclusions of the analyses in this paper are based
on empirical data collected through several attack simulations. We have used χ2

threshold values corresponding to 25% significance level (or 75% specificity). See
Table 12 in the appendix. This choice was based on the following reasons:

1. Our aim is to show the effectiveness of our attacks on RC6, ERC6 and MRC6
when compared to conventional χ2 cryptanalysis with randomly generated
plaintexts. Hence, as long as the same significance level is used for the two
types of tests, the value of the significance level is irrelevant.

2. Our attack simulations show that the number of chosen plaintexts required
with a better (we considered 10%) significance level could be determined by
the number corresponding to 25% level.

3. In the literature 25% seems to be an acceptable value [6].

This paper is organized as follows. Section 2 briefly describes χ2 cryptanalysis
and introduces our technique; Sect. 3 gives the specifications of the RC6, ERC6
and MRC6 ciphers; Sect. 4 provides the experimental results of our χ2 attacks
on the three ciphers. Also, in Sect. 4 comparisons are drawn between our attacks
and previously applied methods. Section 5 concludes the paper.

2 The χ2 Test and Our Generic Approach

The χ2 statistical test has already been applied to a number of ciphers, such as
the DES in [7], on SEAL [8], on M6, MX and RC5P [5], on RC5, RC6 and many
simplified variants [9,10,11,12,13,14,1,15].

Consider an experiment E with k simple, mutually independent outcomes.
Let o1, . . . , ok and x1, . . . , xk denote the observed and expected frequencies, re-
spectively, of the k outcomes when E is performed N times. Therefore, N =∑k

i=1 oi =
∑k

i=1 xi. For each outcome, there can be a difference between the
observed and the expected frequencies. The idea behind a χ2 test is to combine
all these differences into one overall measure of the distance between the data
and the expectations of the model. The χ2 statistic with k−1 degrees of freedom
is defined [16] as,

Q =
k∑

i=1

(oi − xi)2

xi
, (1)
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where the sum is over xi �= 0. When the observed frequency is far from the
expected one, the corresponding term oi − xi in the sum is large; when they are
close, oi−xi is small. The quantity Q gives a measure of the distance between the
observed and expected frequencies; large values of Q indicate that the observed
frequencies are far from the expected ones. In a χ2 goodness-of-fit test, one
defines two hypotheses - the null hypothesis (denoted H0) and the alternative
hypothesis (H1). The null hypothesis is the one that exists solely to be falsified
by the sample. If the null hypothesis is rejected, the result is positive. When the
test result tallies with the actual reality, the result is true. The false-negative rate
of the test, that is, the fraction of positive instances that were falsely reported
as negative, is denoted by β. The sensitivity (or power) of the test is the true-
positive rate (1−β). The significance of the test is the false-positive rate (α) and
the specificity of the test is the true-negative rate (1 − α). Let χ2

1−α,k−1 denote
the (1−α)-th lower quantile of a χ2 distribution with k − 1 degrees of freedom.
In a χ2 test, H0 is rejected (in other words, H1 is accepted), if Q > χ2

1−α,k−1

with 100α % error. We denote χ2
1−α,k−1 simply as χ2

1−α when k−1 is clear from
the context.

In our approach, N is the number of plaintexts - the parameter to be deter-
mined. Let E′ denote the experiment E repeated N times. To minimise error, we
consider q randomly generated keys and E′ is performed q times. We could esti-
mate the mean and variance of the χ2 values for the entire key space using the
Student’s t-distribution. But this requires that the population be normally dis-
tributed. This is nearly achieved when the number of degrees of freedom (k− 1)
is large since when k → ∞, the χ2 variate becomes a normal variate. Finally,
using q, the q-sample mean and sample variance, a confidence interval (CI) is
computed, using the t-curve, for the mean of the population. We use 90% confi-
dence interval in our tests. In other words, the chance that the population mean
falls below (or above) the interval is 5%. The lower end point of the interval
(minCI) is taken for the population mean. This means that there is 95% chance
that the actual population mean is above this value. In our experiments, we
accept H1 if minCI is greater than χ2

1−α,k−1. This automatically implies that
the actual population mean is greater than χ2

1−α,k−1 with 95% probability and
thus, the error is small.

In this paper, we use the χ2 test under the following settings (where XRC6
denotes RC6, MRC6 or ERC6 and r > 0):

H0: a subset of bits output by r-round XRC6 is uniformly distributed,
H1: a subset of bits output by r-round XRC6 is non-uniformly distributed.

Thus, (1) becomes

Q =
k∑

i=1

(ni − N/k)2

N/k
. (2)

A requirement in χ2 tests is that N ≥ 5 · k, so that the computed χ2 value is
valid. In conventional χ2 cryptanalysis, most of the plaintext bits are generated
at random. However, plaintexts can be chosen in the following way to yield more
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efficient attacks. Initially, a linear analysis (LC) is performed to determine which
z least significant bits (lsb) of d words, in an n-bit block are linearly correlated
to the same set of bits after a certain number r of rounds. This approach of using
LC results prior to the χ2 analysis has already been adopted in [13]. For RC6,
d = 2, z ≤ 5, n = 128 and r is multiple of 2, as indicated by (3) in Sect. 4.1. This
set of d ·z plaintext bits will be fixed (to an arbitrary value), while the remaining
n− d · z plaintext bits are free to vary. These two sets of bits are disjoint. These
plaintexts are encrypted across r rounds, and the χ2 value is computed for the
d ·z ciphertext bit positions given by the linear relation. If the resulting χ2 value
supports acceptance of H0, then we stop, record the number N of plaintexts
encrypted so far, and proceed the same analysis y rounds farther (in this paper,
y = 2). Otherwise, we consider the remaining n−d ·z plaintext bits as a counter,
increment it, and encrypt the corresponding plaintext for r rounds. The number
of degrees of freedom is k − 1 = 2d·z − 1. We look for the minimum N for which
H1 is accepted. Each test is repeated q times; we use q = 20. The following
pseudocode describes the overall procedure.

TEST (H0, H1, N , r, q, α)
(1.) for (i = 1; i ≤ q; i + +) {
(2.) for (j = 1; j ≤ N ; j + +) {
(3.) fix the given set of d · z bits of plaintext Pj

(4.) vary the remaining bits of Pj incrementally
(5.) encrypt Pj through r rounds and obtain Cj

(6.) let X be the concatenation of given d · z bits of Cj

(7.) increment counter T [X ] by 1
(8.) }
(9.) let Qi be the χ2 value of T [X ]’s
(10.) }
(11.) let m be the average over all Qi, 1 ≤ i ≤ q
(12.) let σ be the standard deviation over all Qi, 1 ≤ i ≤ q
(13.) let minCI = m − 1.729 · σ/

√
q (lower limit of a 90% CI)

(14.) let χ2
1−α,k−1 = value at 100(1 − α)% in the χ2 cumulative distribution

with k − 1 degrees of freedom
(15.) if (minCI > χ2

1−α,k−1)
(16.) choose H1 and note the j corresponding to N
(17.) else choose H0

For our target ciphers, a further consequence of the new approach is a smaller
demand for chosen plaintexts, due to weak diffusion. As already pointed out in
[13], too small or too large rotation amounts lead to weak diffusion across multi-
ple rounds of RC6. The same phenomenon can be observed in ERC6 and MRC6.
This is an essential weakness exploited in our attacks since the linear relations
(3), (4) and (5), which indicate the d · z bits in lines (3.) and (6.) of TEST(),
rely on these assumptions. A smaller number of plaintexts implies a smaller en-
cryption time, and thus, faster attacks. It shall be observed that the more bits
are under analysis, the better the attack outcome. Nonetheless, the data (and
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time) complexities increased quickly beyond our computational resources. Con-
sequently, we used different value of z for the plaintext and ciphertext, unlike in
TEST() where z is identical for plaintext and ciphertext (here, we have followed
the approach of [12,14]).

Our attacks on RC6 and the approach used in [13] are different. We fix a
number of bits to zeros and vary the remaining bits incrementally; whereas in
the latter, the remaining bits are random. The result is that, with Knudsen
and Meier’s method, one can turn the CP setting into a KP one at the cost
of a factor of 2d·z in the data and time complexities. Secondly, we used 90%
confidence interval (CI) to minimise error, whereas [13] did not use CI.

3 The RC6, ERC6 and MRC6 Families of Block Ciphers

Initially, we provide some relevant notations: ’⊕’ denotes bitwise exclusive-OR;
’�’ denotes addition modulo 2w; ’∗’ denotes multiplication modulo 2w; x ≪ y,
where x and y are w-bit words, means that x is cyclically shifted to the left by
the amount given by least significant log2 w bits of y. The function F : ZZw

2 → ZZw
2

is given by F (X) = (2∗X2 �X) ≪ log2w. Notice that F has only one operand,
and is a bijective mapping. Thus, it behaves as a w × w-bit nonlinear S-box.

3.1 RC6

The RC6 cipher follows a generalized Feistel Network structure, and stands for
a family of ciphers formally denoted RC6-w/r/b, where w is the word size in
bits, r is the number of rounds, and b is the key size in bytes. For the AES
competition, w = 32, r = 20, and b ∈ {16, 24, 32}, and RC6 is a shorthand
for these parameter choices. All internal cipher operations are over w-bit words,
where w ∈ {8, 16, 32, 64}. Fig. 1 depicts the RC6 encryption algorithm. Each text
block contains four w-bit words. For instance, Ai, Bi, Ci, Di, denote the input
words to the i-th round. The w-bit round keys are indexed S[0], . . . , S[2r + 3].
The key schedule algorithm generates the round keys from the b-byte user key.
We do not exploit the key schedule algorithm in our analysis; therefore, we omit
its description and refer the interested reader to [1]. Former security analyses
of RC6 include differential and linear analyses [1], multiple linear relations [17],
and χ2 analyses [9,13,1,15].

3.2 MRC6

The MRC6 cipher follows a generalized Feistel Network structure and was pro-
posed in [4], with main focus on (software) performance. No security analysis was
presented. MRC6 is a parameterized family of ciphers formally denoted MRC6-
w/r/b, with the same meaning as for the parameters of RC6. But, nominal values
of these parameters were omitted in [4]; one can find the values w = 32, b = 16
and r = 16 when the software performance of MRC6 is compared with that of the
AES and RC6 (on Pentium-III, with the se parameters, MRC6 encrypts at about
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19.5 MB/sec making it nearly twice as fast as RC6). Otherwise, these parame-
ters are unspecified. The fact that these parameters are unrelated helps adapt
MRC6 as a compression function in hash modes [18] such as Miyaguchi-Preneel
and Matyas-Meyer-Oseas, where the key and text inputs have different sizes. An
MRC6 text block contains sixteen w-bit words, denoted Ai, Bi, . . . , Pi as inputs
to the i-th round. Moreover, the w-bit round keys are indexed S[0], . . . , S[8r+7].
Like in RC6, there are pre-whitening and post-whitening layers. Here again, we
omit the description of the key schedule algorithm and refer the reader to [4].
Fig. 3 depicts the MRC6 encryption algorithm. In our experiments, we use MRC6
with w = 32 and b = 16.

3.3 ERC6

The ERC6 cipher follows a generalized Feistel Network structure, and was pro-
posed in [3], as a parameterized family of ciphers formally denoted ERC6-w/r/b,
with w ∈ {16, 32, 64}, r ∈ {0, 1, 2, . . . , 255}, b ∈ {0, 1, 2, . . . , 255}. These parame-
ters appear to be loosely coupled. No attacks have been reported on any version
of ERC6. On Pentium-III, with parameters w = 32, b = 16 and r = 16, ERC6
encrypts at about 17.3 MB/sec making it about 1.7 times faster than RC6.
Each text block of ERC6 contains eight w-bit words, denoted Ai, Bi, Ci, Di,
Ei, Fi, Gi, Hi, as inputs to the i-th round. The w-bit round keys are indexed
S[0], . . . , S[4r + 7]. Here again, there are pre-whitening and post-whitening lay-
ers. Fig. 2 depicts the ERC6 encryption algorithm. In our experiments, we use
ERC6 with w = 32 and b = 16.

4 Experimental Observations

Our χ2 attacks operate in an adaptive chosen-plaintext (CP) setting.

4.1 Reduced-Round RC6

For RC6, the χ2 test is motivated by an ensemble of linear relations involving
up to the five least significant bits of words Ai and Ci for every two rounds [19].
These linear relations can be represented by

Ai · et1 ⊕ Ci · et2 = Ai+2 · et3 ⊕ Ci+2 · et4 , (3)

where Ai and Ci denote the first and third input words to the i-th round. Each
bitmask, ej = 2j , 0 ≤ j < 5, contains only a single bit equal to one, in the j-th
least significant bit (j = 0 denotes the lsb). This is the lowest possible Hamming
weight. Table 1 shows the result of the experiment on reduced-round RC6 using
our method in the case of ten bits: lsb5(A2i) and lsb5(C2i).

We use χ2
95 = 1098 (95% specificity) to facilitate comparison, since [13] also

uses the same threshold. Moreover, for the same comparison purpose, we did not
use confidence intervals this time. In Table 1, note that with 22 texts we already
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Table 1. χ2 attack simulations on RC6, 210 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 hypothesis

2 2 1071.2 H0

2 3 1169.6 H1

2 4 1398.4 H1

2 5 1561.6 H1

2 6 2009.6 H1

4 16 1039.5 H0

4 17 1066.3 H0

4 18 1094.2 H0

4 19 1151.6 H1

4 20 1267.6 H1

6 32 1030.6 H0

6 33 1036.0 H0

6 34 1020.6 H0

6 35 1018.1 H0

6 36 1028.4 H0

6 37 1009.6 H0

start to reach the same results of [13], whereas they needed 213 texts to arrive
at a χ2 value of 1098. For four rounds, we noticed very close approximations for
the same χ2 values with 218 texts, while [13] required 229 texts to arrive at data
with the same specificity.

The experimental results for 2-round RC6 show that our approach requires
only 23 texts to reach the same χ2 value that is obtained with 214 texts using
the approach in [13]. For 4-round RC6, these figures are 219 texts using our
technique against 230 for [13]. For 6-round RC6, our method required more than
237 texts to detect correlation. In this case (and for more rounds), it could not
be concluded whether our approach was better than [13].

4.2 MRC6

For MRC6, our χ2 attacks were motivated by the following 2-round iterative
linear relation (using Type-I approximations [19])

Ai · et1 ⊕ Ci · et2 ⊕ Ei · et3 ⊕ Gi · et4 ⊕ Ii · et5 ⊕ Ki · et6 ⊕ Mi · et7 ⊕ Oi · et8 =
Ai+2 · et9 ⊕ Ci+2 · et10 ⊕ Ei+2 · et11 ⊕ Gi+2 · et12 ⊕
Ii+2 · et13 ⊕ Ki+2 · et14 ⊕ Mi+2 · et15 ⊕ Oi+2 · et16 (4)

where Ai, Ci, Ei, Gi, Ii, Ki, Mi and Oi are input words to the i-th round. In
particular, the masks ej with highest bias are such that 0 ≤ j < 5, that is, the
bits in the masks are restricted to the five least significant bit (lsb) positions.
Our experiments distinguish r rounds of MRC6 from a random permutation,
where r is even. We fix up the 8 · log2 w least significant bits of words A0, C0,
E0, G0, I0, K0, M0 and O0 (that is, including the pre-whitening), and analyse



8 J. Nakahara Jr. et al.

Table 2. χ2 attack simulations on MRC6, 28 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 305.2 264.6 4 H0

2 2 444.0 376.8 18 H1

2 3 667.2 622.9 20 H1

4 3 299.2 262.8 8 H0

4 4 321.6 303.0 19 H1

4 5 368.8 353.7 20 H1

6 8 265.8 256.7 8 H0

6 9 282.1 270.6 11 H1

6 10 288.9 276.7 15 H1

6 11 316.5 298.1 16 H1

6 12 370.8 343.3 20 H1

8 18 273.0 265.0 11 H0

8 19 288.1 279.8 16 H1

8 20 327.5 311.1 20 H1

10 27 273.5 265.4 11 H0

10 28 288.2 275.7 12 H1

10 29 290.2 278.2 15 H1

10 30 336.2 317.2 19 H1

10 31 402.7 368.0 19 H1

10 32 407.8 357.0 19 H1

10 33 434.1 374.1 20 H1

the combined 8 · y least significant bits (y ∈ {1, 2}) of A2i, C2i, E2i, G2i, I2i,
K2i, M2i and O2i, for i > 0, that is, after an even number of rounds.

Table 2 shows the result of the experiment in the case of the eight bits: lsb1(A2i),
lsb1(C2i), lsb1(E2i), lsb1(G2i), lsb1(I2i), lsb1(K2i), lsb1(M2i), lsb1(O2i). We use
χ2

75 = 269.85. Starting from six rounds, the number of texts for which H0 is re-
jected starts to increase by a factor of about 210 every two rounds. Thus, for r
rounds (r even and r ≥ 6), the following is expected for N (numner of chosen
plaintexts) in terms of r: N = 29 · 210·(r−6)/2 = 25r−21. In TEST(), we choose
plaintexts such that the lsb5(A0), lsb5(C0), lsb5(E0), lsb5(G0), lsb5(I0), lsb5(K0),
lsb5(M0), lsb5(O0) are set to zero, while the remaining bits are changed incremen-
tally. This implies at most 2512−40 = 2472 plaintext blocks are available. Thus, we
require 25r−21 ≤ 2472, or 5r ≤ 493, or r ≤ 98. The data complexity is at most
2472 plaintext blocks. It means that MRC6 would require at least r = 99 rounds
to counter this χ2 attack.

Table 3 shows the result of the experiment in the case of 16 bits: lsb2(A2i),
lsb2(C2i), lsb2(E2i), lsb2(G2i), lsb2(I2i), lsb2(K2i), lsb2(M2i), and lsb2(O2i) after
an even number of rounds of MRC6. We use χ2

75 = 65779. Starting from six
rounds, the number of texts for which H0 is rejected starts to increase by a
factor of about 210 every two rounds. Thus, for r rounds (r even and r ≥ 6),
the following is expected for the number of chosen plaintexts in terms of r: N =
212 ·210·(r−6)/2 = 25r−18. The analysis is similar to the 8-bit case in the previous
paragraph. Following the same rationale, at most 2512−40 = 2472 plaintext blocks
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Table 3. χ2 attack simulations on MRC6, 216 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 68810.8 63145.2 1 H0

2 2 80277.6 72615.5 8 H1

2 3 90923.2 84597.2 18 H1

2 4 125731.2 116640.0 20 H1

4 4 65520.0 65520.0 0 H0

4 5 66732.8 65828.2 5 H1

4 6 67622.4 66920.0 14 H1

4 7 69913.6 68843.6 19 H1

4 8 74035.2 72727.0 20 H1

6 11 65804.8 65643.3 12 H0

6 12 66108.8 65941.0 16 H1

6 13 66850.4 66685.1 20 H1

8 20 65804.6 65648.0 11 H0

8 21 66090.0 65912.8 15 H1

8 22 66862.9 66608.5 19 H1

8 23 68275.1 67872.4 20 H1

10 30 65637.4 65450.0 9 H0

10 31 65916.7 65760.9 14 H1

10 32 65961.5 65778.7 11 H1

10 33 66128.2 65961.9 16 H1

10 34 66521.0 66262.4 18 H1

10 35 67043.6 66671.7 19 H1

will be available. Thus, this analysis holds as long as 25r−18 ≤ 2472, or 5r ≤ 490,
or r ≤ 98. Again, the data complexity is at most 2472 plaintext blocks, and
MRC6 requires at least 99 rounds to counter this χ2 attack.

In order to compare the approach in Table 2 with an alternative approach
used in [13], we provide Table 4.

Experimentally, we have observed that less chosen plaintexts are needed in
the new approach than in the conventional approach of [13], at least for two,
four and six rounds.

We point out that in Tables 2 and 3, the minimum value of N for which
H1 is accepted may be less than 5 · k when the number of rounds is small. For
example, the values of N for 2, 4 and 6 rounds in Table 2. This phenomenon is
particular for a small number of rounds, and is due to the large block size and the
slow diffusion in MRC6 (unlike the AES, in which diffusion is guaranteed by an
MDS matrix, in MRC6 the diffusion depends on appropriate rotation amounts).
Therefore, we also use these former values of N to estimate the minimum N for
which H1 is accepted, for higher numbers of rounds. For 8 or more rounds, the
(minimum) values for N are greater than 5 · k.

4.3 ERC6

For ERC6, our χ2 attacks were guided by the following 2-round iterative linear
relation (using Type-I approximations [19])
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Table 4. χ2 attack simulations on MRC6 using the approach in [13] with 28−1 degrees
of freedom

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 21 268.0 262.1 12 H0

2 22 276.8 271.4 11 H1

2 23 293.3 288.9 18 H1

2 24 326.4 320.1 20 H1

4 29 256.9 250.6 8 H0

4 30 251.1 245.8 4 H0

4 31 257.5 252.1 8 H0

4 32 258.7 254.0 5 H0

4 33 255.6 251.1 4 H0

6 25 265.5 258.4 9 H0

6 26 258.7 253.2 8 H0

6 27 253.0 247.8 6 H0

6 28 251.3 246.2 4 H0

6 29 254.9 248.6 6 H0

Table 5. χ2 attack simulations on ERC6, 24 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 18.0 15.25 5 H0

2 2 26.4 22.44 8 H1

2 3 37.8 34.20 20 H1

4 12 26.9 22.08 10 H0

4 13 38.7 28.95 14 H1

4 14 65.8 43.67 17 H1

4 15 120.8 78.61 18 H1

4 16 222.5 138.04 19 H1

4 17 446.8 276.82 20 H1

6 23 26.0 20.23 10 H0

6 24 37.9 27.31 13 H1

6 25 59.4 42.71 16 H1

6 26 99.0 68.65 17 H1

6 27 196.2 133.90 18 H1

6 28 375.3 258.18 20 H1

Ai ·et1⊕Ci ·et2⊕Ei ·et3⊕Gi ·et4 = Ai+2 ·et5⊕Ci+2 ·et6⊕Ei+2 ·et7⊕Gi+2 ·et8 , (5)

where Ai, Ci, Ei and Gi, are input words to the i-th round. In particular, the
masks ej with highest bias are such that 0 ≤ j < log2 w.

Table 5 shows the result of attack simulation in the case of 4 bits: lsb1(A2i),
lsb1(C2i), lsb1(E2i) and lsb1(G2i) after an even number of rounds of ERC6.
We use χ2

75 = 22.31. Starting from four rounds, the number of texts for which
H0 is rejected starts to increase by a factor of about 211 every two rounds.
Thus, for r rounds (r even and r ≥ 4), the following is expected for the number
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Table 6. χ2 attack simulations on ERC6 using the approach in [13] with 24−1 degrees
of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 15 17.1 14.1 8 H0

2 16 26.8 22.9 16 H1

2 17 35.2 31.3 20 H1

4 32 14.833 12.03 6 H0

4 33 16.633 13.87 6 H0

4 34 14.549 12.56 5 H0

4 35 15.257 13.20 4 H0

4 36 13.143 11.25 2 H0

Table 7. χ2 attack simulations on ERC6, 28 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 2 309.6 272.0 7 H0

2 3 356.8 316.6 15 H1

2 4 520.0 444.0 20 H1

4 11 284.5 270.3 9 H0

4 12 310.0 291.0 14 H1

4 13 366.8 334.6 17 H1

4 14 468.0 405.2 18 H1

4 15 711.6 579.7 20 H1

6 23 290.5 283.5 14 H0

6 24 325.6 311.9 18 H1

6 25 404.5 379.9 19 H1

6 26 549.3 491.7 20 H1

of chosen plaintexts: N = 213 · 211·(r−4)/2 = 25.5r−9. The algorithm TEST(.)
chooses plaintexts such that the lsb5(A0), lsb5(C0), lsb5(E0), lsb5(G0) are set to
zero. This implies at most 2256−20 = 2236 plaintext blocks are available. Thus,
this analysis holds as long as 25.5r−9 ≤ 2236, or 5.5r ≤ 245, or r ≤ 44. Since
the attack effort is at most 2236 encryptions equivalent number of text blocks,
it means that ERC6 would require at least 45 rounds to counter this χ2 attack.

In order to compare the approach in Table 5 with the approach used in [13],
we provide Table 6. Empirically, we have observed that significantly less chosen
plaintexts are needed in the new approach than in the conventional approach of
[13], at least for two and four rounds.

Table 7 shows the result of analysing the 8-bit value from the concatenation of
lsb2(A2i), lsb2(C2i), lsb2(E2i) and lsb2(G2i) after an even number of rounds of
ERC6. We use χ2

75 = 284.34. Starting from four rounds, the number of texts for
which H0 is rejected starts to increase by a factor of about 212 every two rounds.
Thus, for r rounds (r even and r ≥ 4), the following behaviour is expected for
the number of chosen plaintexts: N = 212 · 212·(r−4)/2 = 26r−12. Following a
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similar reasoning as in the previous paragraph, this analysis holds as long as
26r−12 ≤ 2236, or 6r ≤ 248, or r ≤ 41. Since the attack effort is at most 2236

encryption, ERC6 requires at least 42 rounds to counter this χ2 attack.

5 Conclusions and Further Work

This paper presented a new approach to the χ2 statistical test applied to RC6,
ERC6 and MRC6 block ciphers. These attacks were preceeded by a linear crypt-
analysis of these same ciphers, which provided promising bit positions to be
analysed by the χ2 tests. For 2-round and 4-round RC6, our method improves
the data complexity of the previously best-known χ2 attacks [13] by a factor of
about 211. Tables 8, 9, 10 and 11 summarize our attacks on ERC6 and MRC6.

Overall, our attacks reduced the number of chosen plaintexts to detect χ2

correlation when compared to conventional χ2 attacks. Consequently, we could
apply and check in practice our predictions on attacks up to 10-round MRC6

Table 8. Summary of χ2 attacks analysing 8 bits output by MRC6

#Rounds Time Data Memory Comment

2 22 22 CP 22 Table 2
4 24 24 CP 24 Table 2
r 25r−21 25r−21 CP 25r−21 6 ≤ r < 99, r even

Table 9. Summary of χ2 attacks analysing 16 bits output by MRC6

#Rounds Time Data Memory Comment

2 22 22 CP 22 Table 3
4 25 25 CP 25 Table 3
r 25r−18 25r−18 CP 25r−18 6 ≤ r < 99, r even

Table 10. Summary of χ2 attacks analysing 4 bits output by ERC6

#Rounds Time Data Memory Comment

2 22 22 CP 22 Table 5
4 213 213 CP 213 Table 5
r 25.5r−9 25.5r−9 CP 25.5r−9 4 ≤ r < 45, r even

Table 11. Summary of χ2 attacks analysing 8 bits output by ERC6

#Rounds Time Data Memory Comment

2 23 23 CP 23 Table 7
4 211 211 CP 211 Table 7
r 26r−12 26r−12 CP 26r−12 4 ≤ r < 42, r even
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and 6-round ERC6. The reduction in the data complexity of our attacks was
influenced by the weak diffusion in the target ciphers.

In the analyses of M6, MX and RC5P in [5], the χ2 tests were supported
by evidence collected from mod-n analyses of these ciphers. The nonuniform
distribution of residues modulo n of internal cipher components, for n a prime
number, was corroborated by experimental χ2 tests. Likewise, in this paper, our
results were supported by linear relations.

The analyses presented in this paper considered sets of randomly chosen keys,
that is, no particular (weak) keys were purposefully used. This implies that even
better results could have been achieved with keys that caused null rotation in
some rounds under analysis (as observed in [13]). This issue of weak keys for χ2

attacks is left as a problem for future work. Analogously, we have focused on
distinguishing attacks only. Key-recovery attacks are also left as further work.
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A Tables and Figures

Table 12. χ2 threshold values, specificities and degrees of freedom

Degrees of Freedom (k − 1)
χ2 24 − 1 28 − 1 212 − 1 216 − 1 220 − 1 224 − 1

0.60 15.73 260.09 4117.30 65626.10 1048941.26 16778682
0.70 17.32 266.34 4141.97 65724.37 1049333.93 16780252
0.75 18.24 269.85 4155.67 65778.82 1049551.40 16781122

Specificity 0.80 19.31 273.79 4170.96 65839.50 1049793.60 16782090
(1 − α) 0.85 20.60 278.43 4188.84 65910.27 1050075.96 16783219

0.90 22.31 284.34 4211.40 65999.39 1050431.31 16784639
0.95 24.99 293.25 4244.99 66131.63 1050958.14 16786744
0.99 30.58 310.46 4308.47 66380.16 1051946.85 16790690
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Fig. 1. Computational graph of the RC6 block cipher for encryption, showing pre-
whitening, one full round and post-whitening
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