
Architectural Recovering Model for Distributed
Databases: A Reliability, Availability and

Serviceability Approach
Ramon Hugo de Souza, Paulo Arion Flores,

Mário Antônio Ribeiro Dantas and Frank Siqueira
Federal University of Santa Catarina (UFSC)

Distributed Computing Research Laboratory (LaPeSD)
Email: ramonh@inf.ufsc.br, pauloarion@gmail.com,

mario.dantas@ufsc.br and frank.siqueira@ufsc.br

Abstract—The early theoretical studies that presented con-
ceptual definitions for the mapping of Quality of Experience
(QoE) through Quality of Service (QoS), in an approach focused
on Distributed Databases (DDBs), showed the directions to be
threshed in a way to accomplish a hybrid DDBs’ QoE-QoS set of
evaluation criteria. That evaluation set being classified explicitly
as partial, since QoE is a known multidimensional concept, hard
to be explicitly well-defined. With these newfound equations being
useful specifically to system-level purposes, without focusing on
the user explicitly, as the usual QoE approach, these studies pre-
sented a new abstraction that allows web storage cloud services
to adequately explore and assess requirements for contracted
services. This study presents a novel architectural model to deal
with reliability, availability and serviceability issues, in order to
provide a solution giving QoS-like guarantees to DDB systems.
With its origins in this set of evaluation criteria, this new kind of
architectural solution aims to provide more stability by dealing
with statistical guarantees. The proposed architecture focuses on
these evaluations to choose recovery procedures, in order to avoid
future unexpected behaviour, dealing with horizontal and vertical
DDB’s solutions to keep the services according to a Service Level
Agreement (SLA).

Index Terms—Availability, big data, cloud services, distributed
database architectures, quality of experience, quality of service,
reliability, serviceability.

I. INTRODUCTION

This study aims to show the use of the evaluation equations
of a theoretical mapping model of Quality of Experience (QoE)
through Quality of Service (QoS) [1], focused on Distributed
Databases (DDBs), within a replication architecture model that
deals with horizontal and vertical distributed solutions focused
on choosing the most fit recovery procedures to be followed.

As presented in the above mentioned work about the theo-
retical model, “the absence of quality definitions to distributed
databases, allied with the network-related concepts and its
holistic nature” [1] led to the formulation of this new eval-
uation model in order to fill the conceptual gap in the DDB
literature, as presented in the bibliometric study of the paper.

This theoretical model was a first attempt in order to
ground the QoE definitions in the DDB field with tangible
metrics. It assumes that “QoE is a concept that it is not
only limited to the use of a system or service” [2], but

considers that “the evaluation can be partially defined
as such to provide to a system, or service, the ability to
auto-evaluate its completeness” [1], presenting the definition 1.

Definition 1: The multidimensional concept of QoE can
be partially evaluated as QoS completeness, if the QoS is
statistically well-defined, for system-level purposes.

And with base on these concepts and formulations, pre-
sented in section II, and further analysed in section III, this
study follows the directions to achieve a solution by defining a
new architectural model, focused on reliability and availability,
with effects also over serviceability, using this first theoretical
model, with the architecture as presented in section IV. A
consideration for the resources and quality equations is also
presented to consider the formulas’ framework as a whole.

The main behavioural procedures of the proposed archi-
tecture are also presented in the algorithmic form in section
IV, and detailed in section V, to illustrate the path yet to be
threshed in the future implementations.

Also the behaviour of an architectural implementation for
the model, using a multi-ring structure, with some specific
considerations, is presented in section IV to illustrate the
possibilities of dealing with a two-level service provider ar-
chitecture.

II. THEORETICAL MAP-MODEL OF QOE THROUGH QOS

The work [1] presented a first theoretical model, based on
the technical literature about distributed networks in clouds
and management and evaluation of QoS in DDBs [3, 4, 5],
that allows QoS-based QoE evaluations to be applied to
DDBs. With grounds on the definition of the concepts of
“R&Q (resources and quality) capacity: with execution, stor-
age, networking and workloads constraints; and RAS1 (re-
liability/availability/serviceability) capacity: with reliability,
availability and serviceability or maintainability constraints -

1RAS: A term originally used by IBM to describe the robustness of their
mainframe computers [6].

2016 IEEE Symposium on Computers and Communication (ISCC)

978-1-5090-0679-3/16/$31.00 ©2016 IEEE

including the fault tolerance constraints” [1] as main families
of QoS guarantees to deal with cloud services, and potentially
with DDBs, the work presents family-based evaluations.

Tables I and II present a general description of the metrics
of each family of the model presented in [1].

E
x e

cu
tio

n

Server capacity metric
→ CPU: number
→ CPU Frequency: GHz
→ RAM size: GBs
→ Storage size: GBs
→ Replication: number of replicas
Instance mean starting time metric
→ Time up - time requested: avg in minutes
Instance standard deviation starting time metric
→ Standard deviation of (Time up - time requested)
Response mean time metric (synchronous operation)
→ Mean time of response: avg in milliseconds
Response standard deviation time metric
(synchronous operation)
→ Standard deviation time of response: avg in

milliseconds
Completion mean time metric (asynchronous task)
→ Mean time of response: avg in seconds
Completion standard deviation time metric
(asynchronous task)
→ Standard deviation time of response: avg in

milliseconds

St
or

ag
e

Storage device capacity metric
→ Storage device capacity: GBs
Storage horizontal scalability metric
→ Permissible storage changes to increased workloads:

GBs
Storage replication metric
→ Number of replicas: Minimum number guaranteed

N
et

w
or

ki
ng Network capacity metric

→ Bandwidth, throughput: MBs/s
→ Delay, jitter: milliseconds
Application capacity metric
→ Application capacity: requests/min

W
or

kl
oa

ds

Server horizontal scalability metric
→ Permissible changes to increased workloads:

number of virtual servers in resource pool
Server vertical scalability metric
→ Permissible capacity fluctuoations to workloads:

fluctuation number of CPUs and RAM size in GBs

TABLE I: QoS guarantees of R&Q capacity.

In [1] is also presented the classification of the DDB’s
services to be evaluated as: insertion, update, deletion and
selection. And with the QoS parameters well-defined, as
presented in tables I and II, the defined services can be then
evaluated.

A. QoS Guarantees and QoE Measurement Metrics

Table III lists the RAS guarantees used in the evaluation
formulas for the insertion, update, deletion and selection ser-
vices, as first presented in [1]. Note that since the serviceability

R
el

ia
bi

lit
y Success rate metric

→ Successful service outcomes:
number of successful responses in percentage

Freshness rate metric
→ Access update ratio (AUR): AccessFrequency

UpdateFrequency

A
va

ila
bi

lit
y

Uptime rate metric
→ Percentage of service uptime: TotalUptime

TotalT ime

Se
rv

ic
ea

bi
lit

y

Outage duration metric
→ Duration of a single outage:

outage end time - outage begin time
Mean-time between failures metric
→ Time between consecutive service failures:

NormalOperationalPeriodDuration
NumberOfFailures

Mean-time to switchover metric
→ Time to switchover from a failure: minutes
Mean-time system recovery metric
→ Time to a complete recovery from a service failure:
minutes

TABLE II: QoS guarantees of RAS capacity.

R
el

ia
bi

lit
y Success rate metric

→ Successful service outcomes:
number of successful responses in percentage

Freshness rate metric
→ Access update ratio (AUR): AccessFrequency

UpdateFrequency

A
va

ila
bi

lit
y

Uptime rate metric
→ Percentage of service uptime: TotalUptime

TotalT ime

TABLE III: QoS RAS guarantees for the insertion, update,
deletion and selection capacities evaluation formulas.

capacity deals with related measurable variables that backup
the guarantees for the reliability and availability capacities, it
does not need to be directly explicit in the evaluation formulas
for the system’s behavioural analysis.

The two RAS equations, namely system (1) and user (2)
equations, deal with the availability capacity of uptime rate in
the system case, evaluating the insertion, update, deletion and
selection availability as a whole, and the reliability capacity
of success rate in the user case, evaluating the reliability of
services strictly from the user’s point of view.

The selection equations also evaluates the reliability capac-
ity of freshness rate together with the uptime rate and the
success rate for the system and user cases, respectively, to
consider the freshness of the selected data.

2016 IEEE Symposium on Computers and Communication (ISCC)

QoE
system
RAS

(ins|upd|del) =
UptimeRate

SLA(Ins|Upd|Del.RASGuarantee)
[0; 1]

QoE
system
RAS

(sel) =
UptimeRate∗FreshnessRate

SLA(Sel.RASGuarantee)
[0; 1]

(1)

QoEuser
RAS(ins|upd|del) = SuccessRate

SLA(Ins|Upd|Del.RASGuarantee)
[0; 1]

QoEuser
RAS(sel) = SuccessRate∗FreshnessRate

SLA(Sel.RASGuarantee)
[0; 1]

(2)

These Service Level Agreement (SLA) related variables,
presented on equations 1 and 2, are directly correlated values,
and the equations are the completeness of the expected uptime
and success rates, respectively, with the freshness rate in the
selection cases.

The RAS variables are about the services’ reliability, avail-
ability and serviceability completeness, as the name of the
equation’s family suggests. Table IV lists the R&Q guarantees
used in the evaluation formulas for the insertion, update, dele-
tion and selection services, as first presented in [1]. Notice that
these are time evaluations, being the storage, networking and
workload capacities, capacities with measurable variables that
give backup guarantees for the execution capacity, which do
not need to be directly explicit in the evaluation formulas for
the evaluation of the system’s behaviour. Also the completion
metrics are not used in the evaluations, since only synchronous
operations are considered.

E
xe

cu
tio

n

Instance mean starting time metric
→ Time up - time requested: avg in minutes
Instance standard deviation starting time metric
→ Standard deviation of (Time up - time requested)
Response mean time metric (synchronous operation)
→ Mean time of response: avg in milliseconds
Response standard deviation time metric
(synchronous operation)
→ Standard deviation time of response: avg in

milliseconds

TABLE IV: QoS R&Q guarantees for the insertion, update,
deletion and selection capacities evaluation formulas.

The two R&Q equations, namely system (3) and user (4)
equations, deal with the execution capacities of starting mean
time + n1* standard deviation and response mean time + n2*
standard deviation, with n1 and n2 usually between 1 and 2, in
the system case, evaluating the execution mean response time
as a whole, and the execution capacities of instance starting
and reponse times in the user case, evaluating the response
time in the strict point of view of the user for every transaction
individually.

QoE
system
R&Q

(ins|upd|del|sel) = [0; 1]

SLA(Ins|Upd|Del|Sel.R&QGuarantee)
(InstanceMeanStartTime+n1∗InstanceStdDevStartTime)+
(ResponseMeanTime+n2∗ResponseStdDevTime)

(3)

QoEuser
R&Q(ins|upd|del|sel) =

SLA(Ins|Upd|Del|Sel.R&QGuarantee)
InstanceStartingTime+ResponseTime

[0; 1]
(4)

These SLA related variables, presented on equations 3 and
4, are directly correlated values and the equations are the

completeness of the expected system mean response time and
user transaction response time, respectively.

The R&Q variables are about the services’ response times
as agreed, dealing with the resources available and its quality
of response, as the name of the family suggests.

As presented on [1], the system could also be evaluated as
a whole combining the RAS and R&Q completeness together,
as shown on equations 5 and 6.

QoE
system
total

(ins|upd|del|sel) = QoE
system
RAS

(ins|upd|del|sel) [0; 1]

∗QoE
system
R&Q

(ins|upd|del|sel)
(5)

QoEuser
total(ins|upd|del|sel) = QoEuser

RAS(ins|upd|del|sel) [0; 1]

∗QoEuser
R&Q(ins|upd|del|sel) (6)

III. METRICS ANALYSIS

The focus of this work is into equations 1 and 2, and how to
define an architectural model considering the RAS parameters,
being also presented the analysis of equations 3 and 4, to show
the impact of the whole model in the prediction of systems’
behaviour, and how they could be used in order to avoid future
unexpected behaviour with on demand data analysis.

For equation 1, QoEsystem
RAS (ins|upd|del|sel), let’s consider

UptimeRate = rate for the insertion, update and deletion
cases, and UptimeRate * FreshnessRate = rate for the
selection case. This rate should be an individual value for
each operation type, being here considered as one individual
value for the sake of simplicity.

The SLA(Ins|Upd|Del|Sel. RASGuarantee) is the com-
pletion guarantee over the defined rate value, but since it is
a guarantee that considers an expected mean with a standard
deviation, from this point on we will consider this kind of
equation range guarantees splitted into equations like: SLA
mean
RASGuarantee

2, SLAmin
RASGuarantee and SLAmax

RASGuarantee.
As an example let’s consider a generic guarantee of:

rate
SLAmin

RASGuarantee
≥ 1,

with the SLAmin
RASGuarantee being the expected mean minus

one times the standard deviation. And considering that ex-
ample of SLA agreement with the guarantee of 68.2% of the
values being into the range of the mean ± standard deviation in
a normal distribution, we have 84.13% of the values above this
considered minimum. Note that in this generic exemplification,
with all the operations together, the effect over the selection
guarantee is stronger in the UptimeRate, since it is multiplied
by the FreshnessRate, then needing an upper UptimeRate
value when compared to the equation applicable to insertion,
update and deletion.

And then we have that simply:

rate ≥ SLAmin
RASGuarantee.

Being the measures of QoEsystem
RAS

3 between 1 and 0.8413
acceptable for the one standard deviation consideration, but

2When not expliciting operations into an equation we, from this point on,
will consider them dealing with the four operations.

3This is a complex kind of guarantee, not being a static value, but a mean
and standard deviation combination guarantee.

2016 IEEE Symposium on Computers and Communication (ISCC)

also measures that should trigger at least soft recovery pro-
cedures to avoid future unexpected behaviour. While the rate
equation results in a value above the given SLAmin

RASGuarantee

the guarantees are being kept.
Considering the UptimeRate parameter, a first solution to

avoid the value of the rate equation getting close to the given
SLAmin

RASGuarantee, or less, is to deal with horizontal scala-
bility, and then to start new database replicas. This decision is
not straightforward, because the availability metric is not able
to identify if a service is on, but only if the service can be
reached. It is also a complex evaluation point, since the service
could deal with a limited requisitions queue. A better solution
could be to deal with vertical scalability to increase the queue
size or to increase the processing capacity and accelerate the
dequeuing process, since these solutions will have less impact
on the FreshnessRate parameter, that affects the selection
QoEsystem

RAS evaluation. But the FreshnessRate parameter
aside, the horizontal scalability is the natural choice to solve
this kind of problem in a long term.

Another issue that must be taken into account, when choos-
ing between horizontal and vertical strategies, is the time
to replicate a database with the horizontal strategy, or the
availability of resources when considering the vertical strategy.
And with these issues taken into account, a solution that
appears to fit is the possibility of dealing with a limited number
of non-prioritary replicas in a special pool of dormant replicas,
that can be awakened to a prioritary level, migrating to the
pool of serving replicas.

The considered trigger to start a soft maintenance process,
either horizontal or vertical, could be the rate to reach
the decreasing value of SLAmean

RASGuarantee, since the sys-
tem is expected to work with that mean value. A prioritary
maintenance procedure is needed when the system achieves
SLAmin

RASGuarantee.
In the same way, energy saving procedures could be trig-

gered when the system achieves SLAmax
RASGuarantee, sending

replicas to a non-prioritary pool, or decreasing the resources
vertically.

Since horizontal replication is a more long term solution, it
should be prioritarily used when it is verified that a system is
not well designed. The vertical solution could be used for a
faster response, and to solve punctual problems as verified by
QoEuser

RAS , that deals with the SuccessRate. Then the vertical
solution could be used in a way to verify problems of uptime
related to success first, as a momentary fluctuation, and if the
fluctuation persists the system should then trigger horizontal
replication procedures.

For example, let’s assume a DDB with s servers, each one
with an abstract capacity denoted by c. In a moment the
QoEsystem

RAS reaches the value SLAmin
RASGuarantee the s servers

should be vertically scaled to a capacity c = c+ n.
Existing an expected mean value for the capacity, the

capacity level could be analysed from time to time to decide
if the number of servers should grow. If so, the value of the
capacity in the active servers should return to the expected c

value when a new server replica is awakened from a pool of
dormant replicas.

When the cause of the unexpected measure is the
Freshness Rate, the access update ratio can also be in-
creased to correct the expected QoEsystem

RAS (sel), as an alter-
native solution.

For equation 2, the QoEuser
RAS , we have an evaluation that

relates to solutions of vertical approach, as mentioned before,
focusing on solving problems related to success rate for
momentary problems.

Considering this kind of approach, if the resources stabilize
in an unexpected value, let’s say above the expected capacity
level, the system should consider to trigger a horizontal
scalability procedure and wake up a replica from a dormant
pool. If the opposite occurs, and the resources stabilize below
the expected capacity level, the system may consider to
trigger vertical scalability’s energy saving procedures, such as
reducing the processing power of the active nodes. Or, in a
capacity based overview, to reduce the capacity.

These punctual evaluations may also indicate other avail-
ability problems, that may only be solved by starting instantly
the horizontal procedures, adding new service providers to the
pool of services.

It is interesting to notice that both the horizontal and the
vertical strategies could be started to solve problems with one
specific service, but the scalability procedures will usually
affect all the services provided by a DDB system.

For equations 3 and 4, namely QoEsystem
R&Q and QoEuser

R&Q,
we have time evaluations, as mentioned before. And for
time evaluations the natural solution seems to relate with the
vertical procedures focused on the processing capacity.

The R&Q system evaluation deals with the values consid-
ering the standard deviations, as agreed, and the R&Q user
evaluation deals with the momentary measures, transaction by
transaction. The first one is focused on detecting behavioural
problems that could lead the system to future unexpected
states, while the second is focused on detecting punctual
problems, on demand, that need instant solutions.

When considering the QoEsystem
R&Q we have the SLA guar-

antee time against the time to start an instance plus the agreed
standard deviation for such, that is mostly the time to reach
a server, which includes the time spent in a queue, with the
response time plus the agreed standard deviation for it, that
is the time of processing the request. And with that given
evaluation it is possible to infer for the need of (1) more
processing power, or (2) more service providers in the pool,
when the starting time is not responding as specified, (3) more
processing power when the response time is not according to
the expected mean, but stable, or (4) more service providers
in the pool to solve a high standard deviation state.

The QoEuser
R&Q evaluates the momentary expected time

against the instance starting time plus the response time for
a transaction specifically. This is the total amount of time to
receive a response to a given request.

With the QoEuser
R&Q evaluation, punctual momentary re-

sponse time problems can be identified. For example, problems

2016 IEEE Symposium on Computers and Communication (ISCC)

with a specific server could be identified, and the problematic
service provider could be restarted or replaced by one of the
replicas provided by the pool of dormant replicas.

If the waiting time reaches a limit, the client can signalize
a possible problem with the responding service provider. If
the signalling persists, the system, that could be specified as
a Database Management Systems (DBMS), should inquire the
provider to check for problems.

IV. RAS ARCHITECTURAL MODEL

The presented model considers two categories of pool
with service providers: The service provider’s pool, with the
services available and ready to be used, being provided by
the main servers; and the backup pool, a pool with dormant
replicas, that are awakened from time to time, when the
replicas in the service provider’s pool achieve checkpoints,
with messages from the borderline nodes, that are service
providers responsible for sending the checkpoint data to the
servers in the backup pool.

This is a solution to avoid the time-consuming operations
to create new database replicas from the start when dealing
with horizontal scalability procedures. With the replicas of the
backup pool already in a state close to the state of the online
replicas, it is quicker to have a new working replica in the
same state as the functional replicas on the service provider’s
pool when needed.

Figure 1 illustrates a simple example with a multi-ring
message exchanging implementation, inspired in the example
described in [7], dealing with two full rings in the service
provider’s pool. The rings have two common nodes for a
simple fault tolerance, in a way that if node 2 goes down,
edges a and b become active, and if node 3 goes down, edges
c and d become active.

Fig. 1: RAS architecture model with multi-ring message ex-
changing implementation and simple fault tolerance example.

Nodes 4 and 7 are called borderline nodes, because they are
in the service provider’s pool and partially in the backup pool.
The “partially” is because the edge g, or the edge f if node 4
goes down, wake up the nodes in the backup pool every time
the system reaches a checkpoint and refreshes the data, using

the partially connected ring in the backup pool, by calling a
checkpoint procedure. Being the backup pool an approach to,
at a certain degree, deal with the consistency, availability and
partition tolerance (CAP) theorem [8] with no impact over the
service provider’s pool.

When a new node is required in the service provider’s pool,
let’s say node 11, a new node replica should be instantiated in
the backup pool, as node 14, and added to the ring of backup
replicas. This new node should be replicated based on the
nodes in the backup pool, to avoid impact over the system in
the service provider pool’s side.

Taking into account that the whole architecture is hosted
in a cloud-based environment, the structure can be vertically
scaled very easily due to the elastic nature of the host platform.

The multi-ring message exchange is an interesting approach
to avoid excess of communication, but it is shown here just
as a possible implementation for the architecture as defined.

In this model, as presented in figure 1, a middleware
attached to the DBMS analyses the behaviour of the system
as a whole, and controls the decisions for performing the
horizontal and vertical maintenance procedures.

Notice that to scale horizontally will result in complexity
costs in order to maintain data consistency, due to the fact that
latency increases when the horizontal scalability procedures
tries to keep the consistency [9]. To avoid these latency costs,
the creation of new replicas is done with base only on the
replicas on the backup pool side.

Without considering the fault tolerance illustration and the
exemplification by the multi-ring architecture, that are not the
focus of this work, based on the analysis made on section
III and on the architecture presented in this section, the main
procedures of the expected behaviour in the developed model
are presented in algorithm 1.

The procedures needed to build this model consist of a
RAS minimum and maximum vertical and horizontal guaran-
tee verification procedures and also the checkpoint signaling
procedure to the borderline nodes to deal with the dormant
replicas in the backup pool.

V. ALGORITHM PROCEDURES

It is possible to observe that in algorithm 1 are provided
procedures in accordance with the given QoE-QoS equations
in order to build a solution managing the database architecture
system’s resources according to the rate variation.

Three procedures are presented in algorithm 1:
• The Main procedure, that constantily checks the

rate, calling the RASmin(time) procedure when
the SLAmin

RASGuarantee is achieved, being the
RASmin(time) a procedure that start mechanisms to
provide more resources, or calling the RASmax(time)
procedure when the SLAmax

RASGuarantee is achieved, in
order to release unnecessary resources;

• the RASmin(time) procedure, that iterates while the
value of the QoEsystem

RAS is kept under the expected
value of SLAmean

RASGuarantee, growing the value of the
capacity c by a defined value of n, respecting the

2016 IEEE Symposium on Computers and Communication (ISCC)

Algorithm 1 Reliability-Availability-Serviceability Procedures

1: procedure Main(time)
2: while true do
3: if rate ≤ SLAmin

RASGuarantee then
4: call RASmin(time)
5: else if rate ≥ SLAmax

RASGuarantee then
6: call RASmax(time)
7: else if rate = SLAmean

RASGuarantee then
8: c← coriginal

9: end if
10: wait(time)
11: end while
12: end procedure
13: procedure RASmin(time)
14: while rate < SLAmean

RASGuarantee do
15: if c = cmax then
16: if #replicas = #replicasmax then
17: return
18: end if
19: Wake up a replica from the backup pool
20: Add the replica to the service provider’s pool
21: c← coriginal

22: Start the backup pool new replica procedure
23: else
24: c← c+ n
25: end if
26: wait(time)
27: end while
28: end procedure
29: procedure RASmax(time)
30: while rate > SLAmean

RASGuarantee do
31: if c = coriginal then
32: if #replicas = #replicasmin then
33: return
34: else
35: Remove one replica from the service provider’s

pool
36: end if
37: else
38: c← c− n
39: end if
40: wait(time)
41: end while
42: end procedure

measuring interval of time, keeping the value of the
extended capacity until the mean achieves the expected
SLAmean

RASGuarantee again, or, if the capacity level reaches
its maximum, awakening a new replica from the dormant
pool and reseting c. Note that this procedure solution is
a conservative solution, growing the capacity c until the
SLAmean

RASGuarantee, not SLAmin
RASGuarantee, is reached;

• and the RASmax(time) procedure, that runs in the
opposite way of the RASmin(time) procedure, dealing
with a loop that first checks if the mimimum accepted
value for the resources capacity has been reached, and if
not it decreases it by the defined value of n, or if so it
removes a replica from the service provider’s pool as an
energy saving procedure.

VI. CONCLUSIONS AND FUTURE WORK

This work indicates that is possible to create complex
formulations, in order to deal with the evaluations as presented
in [1], and by that being able to predict, and to avoid,
system’s misbehaviour before reaching unexpected states with
a reliability, availability, and serviceability architectural model.

The proposed solutions presented are based on horizontal
and vertical scalabilities applied to DDB systems, and this
could be implemented directly into a DBMS to avoid these
unexpected states. Being these concepts not new per se, but
suffice to fill this lack of architecture conceptualization over
the database area.

A simple algorithm, with some procedures considering the
generic expected behaviour, was presented to illustrate how to
further develop this study into a new implementation.

The next expected effort is to build an implementation of
these concepts into a DBMS, or to have a module that allows a
DBMS to deal with decisions based on this kind of evaluation.

REFERENCES

[1] R. H. de Souza and M. A. R. Dantas, “Mapping QoE
through QoS in an approach to DDB architectures: Re-
search analysis and conceptualization,” ACM Computing
Surveys (CSUR), vol. 48, November 2015.

[2] P. L. Callet, S. Möller, and A. Perkis, “Qualinet white
paper on definitions of quality of experience,” in European
Network on Quality of Experience in Multimedia Systems
and Services (COST Action IC 1003) (Lausanne, ed.),
(Switzerland), March 2013. Version 1.2.

[3] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing:
Concepts, Technology & Architecture. The Prentice Hall
Service Technology Series from Thomas Erl, Prentice
Hall, 1 ed., 2013.

[4] R. L. de Carvalho Costa and P. Furtado, “Quality of
experience in distributed databases,” in Distributed and
Parallel Databases (S. Netherlands, ed.), vol. 29, pp. 361–
396, 5-6 ed., October 2011.

[5] R. L. de Carvalho Costa and P. Furtado, “Providing quality
of experience for users: The next dbms challenge,” in
Computer (I. C. Soc, ed.), vol. 46, pp. 86–93, 9 ed.,
September 2013.

[6] D. P. Siewiorek and R. S. Swarz, Reliable computer
systems: design and evaluation. Natick, Mass. : A K
Peters, 3th ed., 1998. p. 508.

[7] P. J. Marandi, M. Primi, and F. Pedone, “Multi-ring
paxos,” in Conference on Dependable Systems and Net-
works (DSN), 2012 42nd Annual IEEE/IFIP International,
(Boston, MA), IEEE, June 2012.

[8] S. Gilbert and N. Lynch, “Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services,” in ACM SIGACT, vol. 33, pp. 51–59, ACM New
York, NY, USA, June 2002.

[9] D. J. Abadi, “Consistency tradeoffs in modern distributed
database system design,” in Computer, vol. 45, pp. 37–42,
IEEE, February 2012.

2016 IEEE Symposium on Computers and Communication (ISCC)

